

API Developer Notes

Migrating from XML Select to GWS

29 June 2012

Version 1.4

Migrating from XML Select to GWS ii
Travelport

THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO
TRAVELPORT

Copyright

Copyright © 2012 Travelport and/or its subsidiaries. All rights reserved.

Travelport provides this document for information purposes only and does not promise that the
information contained in this document is accurate, current or complete. This document is subject to
change without notice.. No part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or any means electronic or mechanical, including photocopying and recording for
any purpose other than the licensee’s personal use without the prior written permission of Travelport
and/or its subsidiaries.

Trademarks

Travelport and/or its subsidiaries may have registered or unregistered patents or pending patent
applications, trademarks copyright, or other intellectual property rights in respect of the subject matter of
this document. The furnishing of this document does not confer any right or licence to or in respect of
these patents, trademarks, copyright, or other intellectual property rights.

All other companies and product names are trademarks or registered trademarks of their respective
holders.

Migrating from XML Select to GWS iii
Travelport

Contents

Overview .. 1

XML Select to GWS Migration .. 2

Migration Plan ... 3

SUTA Interface .. 3

Sessions .. 3

Sending and Receiving Transactions .. 3

Moving to GWS ... 4

Mapping of XML Select to GWS Methods ... 4

Appendix A: XML Select Connection Class ... 6

Appendix B: GWS Connection Class .. 8

Migrating from XML Select to GWS 1
Travelport

Overview

An application built on Galileo’s XML Select API can be a valuable addition to your travel business.
However, the deployment of an XML Select application also carries the responsibility of maintaining your
GTIDs, the infrastructure of your XML Select server complex, and dedicated communication lines to
Galileo.

The primary incentives to move from XML Select to the Galileo Web Services (GWS) XML Select API are:

 GTID management that is handled entirely by Galileo.

 No XML Select servers to maintain at your site.

 Less costly Internet connections to communicate with the Computer Reservation System (CRS).

These factors can mean significant operational cost savings. In addition, the GWS API adds new
functionality that can improve the performance and efficiency of your travel applications and allows
development in non-COM compatible languages.

See the Getting Started topic in the Galileo Web Services Help for details about design considerations for
your client application, connecting to Galileo Web Services, and making initial test calls to the Galileo
Web Services.

Migrating from XML Select to GWS 2
Travelport

XML Select to GWS Migration

All XML Select functionality remains in the Web Service version of XML Select. However, the commands
to start and end Host (CRS) sessions are different, although still very simple. Additionally, creating and
maintaining Host sessions is slightly different in the Web Service environment.

Host sessions are difficult to maintain for long periods of time when no transactions occur, because GWS
sessions time out in three minutes. As a result, your session strategy could require reevaluation.

The amount of effort needed to move from XML Select to GWS is highly dependent on the architecture of
your application. The issues that need to be explored include:

 Is SUTA the interface to XML Select?

 Do you create and maintain Host sessions for long periods of time?

 Are the calls to XML Select centralized, or are they dispersed throughout the application?

 Are the credentials hard-coded, or are they kept in a configuration file?

 Does the language used to develop your application support SOAP tools?

If your application does not use long Host sessions, but does use one centralized class to send XML
Select requests to and receive responses from the SUTA object, and if the XML Select credentials are
known only to that class, the transition to GWS is trivial. You can replace the centralized class with a new
one and the process is done. However, if your application uses long host sessions and multiple classes,
the Migration Plan and Appendices in this document provide further details.

Migrating from XML Select to GWS 3
Travelport

Migration Plan

Your plan to migrate to GWS must include a review of:

 Host sessions.

 Methods used to send requests and receive responses.

 Available SOAP tools for your development environment.

SUTA Interface
This document addresses the conversion of applications that use the XML Select SUTA interface, which
is similar to the Galileo Web Services interface. Applications that interface directly to UTA, the HCM, and
the HCM Manager are considerably more difficult to migrate, and may not be candidates for conversion to
GWS.

Sessions
Generally, Host sessions are only a problem if more than three minutes can elapse with no activity. This
typically occurs when the application is waiting for human input, such as a traveler entering their personal
information. The first rule for GWS applications is: never hold a session while waiting for a person to act.
Although an application can keep a session alive by periodically issuing a useless request, such as local
date and time, this increases your transaction count, and can result in Excessive Transaction Charges
(ETAs).

An application can keep a session open as long as necessary if it is interacting with the CRS because
each transaction request resets the three-minute timeout. Therefore, an application that opens a session,
signs into a queue, and works even a large number of PNRs on the queue can easily keep a session
open.

You should avoid scenarios such as opening a session, selling airline seats, and then waiting for the
traveler to input their name, address, phone number, and credit card information. If your application
requires this operating model, GWS may not be a viable option, unless you are willing to change the
application architecture and program flow.

If your application follows a more typical online model of collecting both itinerary information and
passenger information before beginning a booking, then a session can be opened and all of the booking
transactions completed within a single session.

Sending and Receiving Transactions
The preferred architecture for submitting requests and receiving responses is to create a single
connection class that the entire application can use. The purpose of this class is to encapsulate the actual
access method, and to hide the access credentials from the rest of the application. The single connection
class also centralizes the credentials so that only the connection class is affected if a password must be
changed.

If your application is not structured this way, the first step is to re-factor the code to use a connection
class. Search through the source files for methods such as SyncSubmit, TerminalSubmit, BeginSession,
and EndSession, as well as your identity string.

Each time you find a request, be sure to note if the request is submitted within a Host session. Also, note
the data types that are used in the request and response. For an XML Select application, both the request
and the response data are typically an XML-formatted string. Galileo Web Services sends requests and
returns responses as XML documents, but this conversion can be accomplished in the connection class.

Migrating from XML Select to GWS 4
Travelport

After all the transaction locations are identified, create a connection class to replace the individual calls to
the XML Select SUTA COM object. In addition to the constructor, the class must have at least the
following methods:

Method Description

SubmitXml(string request) For non-session requests

 Uses the default filter

SubmitXmlOnSession(string request) Creates a session if necessary

 Uses the default filter

EndSession() For session requests

 Ends the current session

An example of a C# connection class is included in Appendix A: XML Select Connection Class. You can

add methods for terminal transactions or for requests that use filters.

Note that the connection class makes a distinction between sessioned and non-sessioned requests,
whereas XML Select uses the same method for both. Sessions are created automatically as needed
when SubmitXmlOnSession is called, so BeginSession calls can be removed. The connection class also
uses a configuration file to hold the credentials to allow passwords to change without re-compiling the
code.

Moving to GWS

After your application is working with the new connection class, you can complete the transition to GWS
by replacing the connection class with an equivalent class that uses Galileo Web Services. An example of
a GWS connection class is included in Appendix B: GWS Connection Class. The API Developer Notes:
GWSdotNETConnectionClassUsingC# describes the development of a GWS connection class with
optimization and Gzip compression in C# for use with any .NET language. API Developer Notes for Java
are also available.

Planning is the key to a successful migration. Analysis of session activity and interface call patterns will
determine if your application is suitable for Galileo Web Services. The process described in this document
allows for an orderly development as well as a fall back plan by reverting to the XML Select connection
class if necessary.

Mapping of XML Select to GWS Methods
The following list provides equivalent methods between XML Select and GWS.

XML Select Methods GWS Methods

SyncSubmit SubmitXML

SubmitXmlOnSession

MultiSubmitXml

TerminalSubmit SubmitTerminalTransaction

GetTerminalBuffer*

BeginSession BeginSession

EndSession EndSession

 GetIdenityInfo**

Migrating from XML Select to GWS 5
Travelport

*GetTerminalBuffer retrieves a second response from a terminal request. GWS only returns one terminal
response.

**Identity information cannot be displayed via XML Select. Instead, it is provided to the end user with their
provisioning and is submitted with the calls.

Migrating from XML Select to GWS 6
Travelport

Appendix A: XML Select Connection Class

using System;

using SCRIPTABLEUNIVERSALTRANSAGTLib;

using System.Configuration;

namespace XMLSampleApp

{

 /// <summary>

 /// ApolloConn is the abstracted connection class to the Apollo GDS. The

 /// intention of this class is to create a single point of connection to

 /// GDS that can be easily replaced by a GWS connection class

 /// </summary>

 internal class ApolloConn

 {

 ScriptableUniversalTransAgent xmlConn;

 // Set up the static information strings (From App.config file)

 static string identity = "<Application><VendorId>"

+ ConfigurationSettings.AppSettings["VENDORID"] + "</VendorId>" +
"<VendorType>" + ConfigurationSettings.AppSettings["VENDORTYPE"] + "</VendorType>"

+ "<SourceId>" + ConfigurationSettings.AppSettings["SOURCEID"] + "</SourceId>"

+ "<SourceType>" + ConfigurationSettings.AppSettings["SOURCETYPE"]

+ "</SourceType></Application>"

+ "<User><UserId>" + ConfigurationSettings.AppSettings["USERID"] + "</UserId>"

+ "<Pseudo>" + ConfigurationSettings.AppSettings["PCC"] + "</Pseudo></User>";

 private bool sessionActive = false;

 //---

 internal ApolloConn()

 {

 // Establish the connection to Apollo via the SUTA

 xmlConn = new ScriptableUniversalTransAgentClass();

 // Set the HCM name (From App.config file)

 xmlConn.HcmName = ConfigurationSettings.AppSettings["HCMNAME"];

 }

 //---

 internal string SubmitXml(string request)

 {

 // Submit the request using the default filter

 return xmlConn.SyncSubmit(idenity, request, "<_/>");

 }

Migrating from XML Select to GWS 7
Travelport

 //---

 internal string SubmitXml(string request, string filter)

 {

 // Submit the request using the provided filter

 return xmlConn.SyncSubmit(idenity, request, filter);

 }

 //--

 internal string SubmitXmlOnSession(string request)

 {

 // Simple overload for session requests. String input, adds ID and filter

 // and begins a session if one does not exist.

 // Create a session if one does not already exist

 if (!sessionActive)

 {

 xmlConn.BeginSession(System.Convert.ToInt16("0xFFFFFFFF", 16));

 sessionActive = true;

 }

 return xmlConn.SyncSubmit(idenity, request, "<_/>");

 }

 //--

 internal void EndSession()

 // Simple overload that erases the session token

 {

 xmlConn.EndSession(System.Convert.ToInt16("0xFFFFFFFE", 16));

 sessionActive = false;

 }

 }

}

Migrating from XML Select to GWS 8
Travelport

Appendix B: GWS Connection Class

using System;

using System.Net;

using System.Xml;

using System.Configuration;

namespace ApolloConnection

{

 /// <summary>

 /// This class provides the actual connection to the Apollo GDS system for

 /// executing specific XML transactions. The goal of the class is to encapsulate the

 /// actual connection method and the specific credentials needed for access.

 /// ApolloConnection is marked internal, as it is intended that it be used only

 /// by classes in the ApolloAccess class library.

 /// Inherits from the Web Service proxy, so that all of the GWS transaction methods

 /// are available to this instance.

 /// This class also manages the session, creating a new session when needed.

 /// The public class location is an example. To determine the location for you, see

 /// http://testws.galileo.com/GWSSample/Help/GWSHelp/connecting_to_gws.htm

 /// </summary>

 ///

 public class ApolloConn: com.travelport.copy_webservices.americas.XmlSelect

 {

 // Define variables used by multiple methods

 private string gwsHAP;

 private XmlElement defaultFilter;

 private string token = ""; // Session token

 //--

 public ApolloConn()

 {

// Default constructor. Create and set up the credentials for XMLSelect

// WebService.

 string userName = ConfigurationSettings.AppSettings["GWSUSERNAME"];

 string password = ConfigurationSettings.AppSettings["GWSPASSWORD"];

 this.Url = ConfigurationSettings.AppSettings["URL"];

 gwsHAP = ConfigurationSettings.AppSettings["GWSHAP"];

 NetworkCredential netCredentials = new NetworkCredential(userName, password);

 //Create Credential Cache to assign to XMLSelectWebService client

Migrating from XML Select to GWS 9
Travelport

 CredentialCache cc = new CredentialCache();

 //Xml Select uses Basic Authentication, but Windows XP defaults to Digest

 cc.Add(new Uri(this.Url), "Basic", netCredentials);

 Credentials = cc;

 PreAuthenticate = true;

 // Create a default filter document for use in the overloaded simplified

// requests

 XmlDocument dFilter = new XmlDocument();

 dFilter.LoadXml("<_/>");

 defaultFilter = dFilter.DocumentElement;

 }

 //--

 public XmlElement SubmitXml(string request)

 {

 // Simple overloaded version of SubmitXml transaction with a string request,

 // using the default filter

 XmlDocument xmlRequest = new XmlDocument();

 xmlRequest.LoadXml(request);

 return this.SubmitXml(this.gwsHAP, xmlRequest.DocumentElement, defaultFilter);

 }

 //--

 public XmlElement SubmitXml(XmlElement xmlRequest)

 {

 // Simple overloaded version of SubmitXml transaction

 // Uses an XmlElement input and adds the HAP and default filter

 return this.SubmitXml(this.gwsHAP, xmlRequest, defaultFilter);

 }

 //--

 public XmlElement SubmitXml(string request, string filter)

 {

 // Simple overloaded version of SubmitXml transaction with string inputs

 // Convert the strings to XML Documents

 XmlDocument xmlRequest = new XmlDocument();

 XmlDocument xmlFilter = new XmlDocument();

 xmlRequest.LoadXml(request);

 xmlFilter.LoadXml(filter);

 return this.SubmitXml(this.gwsHAP,

xmlRequest.DocumentElement,

xmlFilter.DocumentElement);

 }

Migrating from XML Select to GWS 10
Travelport

 //--

 public void EndSession()

 // Simple overload that erases the session token

 {

 this.EndSession(this.token);

 this.token = "";

 }

 //--

 public XmlElement SubmitXmlOnSession(string request)

 {

 // Simple overload for session requests. String input, adds HAP and filter

 // and begins a session if one does not exist.

 XmlDocument xmlRequest = new XmlDocument();

 xmlRequest.LoadXml(request);

 // Create a session if one does not already exist

 if (this.token == "") this.token = this.BeginSession(this.gwsHAP);

 return this.SubmitXmlOnSession(this.token,

 xmlRequest.DocumentElement,

 defaultFilter);

 }

 //--

 public XmlElement MultiSubmitXml(string request)

 {

 // Simple overloaded version of MultiSubmitXml transaction with a

 // string request, adding the HAP

 XmlDocument xmlRequest = new XmlDocument();

 xmlRequest.LoadXml(request);

 return this.MultiSubmitXml(this.gwsHAP, xmlRequest.DocumentElement);

 }

 //--Properties--

 public string HostProfile

 {

 get { return gwsHAP; }

 }

 }

}

