

API Developer Notes

Issuing a Ticket on the Apollo CRS

29 June 2012

Version 1.2

Issuing a Ticket on the Apollo CRS ii
Travelport

THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO
TRAVELPORT

Copyright

Copyright © 2012 Travelport and/or its subsidiaries. All rights reserved.

Travelport provides this document for information purposes only and does not promise that the
information contained in this document is accurate, current or complete. This document is subject to
change without notice.. No part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or any means electronic or mechanical, including photocopying and recording for
any purpose other than the licensee’s personal use without the prior written permission of Travelport
and/or its subsidiaries.

Trademarks

Travelport and/or its subsidiaries may have registered or unregistered patents or pending patent
applications, trademarks copyright, or other intellectual property rights in respect of the subject matter of
this document. The furnishing of this document does not confer any right or licence to or in respect of
these patents, trademarks, copyright, or other intellectual property rights.

All other companies and product names are trademarks or registered trademarks of their respective
holders.

Issuing a Ticket on the Apollo CRS iii
Travelport

Contents

Overview .. 1

Storing Fares ... 2

Elements of a Stored Fare... 2

Simple Stored Fare Format ... 3

Passenger Description ... 3

Private Fare Information .. 5

Stored Fare Request.. 6

Fare Modifiers .. 8

Private Fares .. 8

IT Tour Code .. 9

Commission Modifier ... 9

Generic Modifiers ... 10

Multiple AFTQs .. 11

Storing Partial or Multiple ATFQs .. 12

Updating a Stored Fare ... 14

Canceling a Stored Fare .. 15

Canceling Multiple Fares ... 15

Verifying a Successful Stored Fare ... 17

Non-Standard Airline Carriers ... 18

Ticketing... 20

The Ticketing Sequence .. 20

Starting a Host Session ... 20

Retrieving the PNR .. 21

Verifying a PNR is Ready For Ticketing .. 22

Check the PNR for a Form of Payment (FOP) .. 22

Check the PNR for a Stored Fare .. 23

Confirm that the PNR Was Not Previously Ticketed ... 23

Confirm that the PNR is Not in Use ... 23

Issuing a Ticket on the Apollo CRS iv
Travelport

Check for Vendor Confirmations .. 23

Fare Verification .. 24

Verify the Number of ATFQs ... 24

Verify Each ATFQ .. 25

Printer Linkage .. 27

Printer Link Request .. 27

Printer Link Response.. 27

Changing the Printer Status ... 28

Issuing Tickets ... 29

Ticketing Request .. 29

Ticketing Response ... 29

Ticketing Error Responses .. 30

Ending the Ticketing Process .. 32

Ending a Host Session .. 32

Voiding a Ticket ... 33

Starting a Host Session ... 33

Retrieving the PNR .. 33

Retrieving the PNR Ticket Information .. 33

Requesting a Void for Each Ticket in the PNR ... 35

Voiding Error Responses ... 35

Ending a Host Session .. 37

Issuing a Ticket on the Apollo CRS 1
Travelport

Overview

Ticketing, also known as Document Production, is a complex sequence of events that is influenced by
almost all aspects of the booking and mainly applies to air travel. This document explains the basic
details of a ticketing approach for online booking applications. It does not cover all aspects of ticketing, as
this complicated topic would require much more documentation.

Issuing a Ticket on the Apollo CRS 2
Travelport

Storing Fares

A properly stored fare sets the stage for the ticketing process, which begins when you store a fare or
fares that pertain to air travel. Fares do not need to be stored at the time of booking, and are not required
to end transact a PNR. However, stored fares are required for ticketing. Also, because most online
applications ticket as soon as practical after booking, it is most efficient to store the fare at the same time
as the booking, after selling air segments and requesting seat assignments.

Storing a fare can be a complex process. The various passenger types and modifiers affect the resulting
price of a fare, and they must all be correct to obtain the intended price.

Fares are stored in the Automated Ticketing Fare Quote (ATFQ) portions of the PNR. A PNR allows up to
eight ATFQs, but the combination of passengers and air segments must be unique for each ATFQ. Most
reservations require only one ATFQ. However, there are a number of reasons to have multiple ATFQs in
one PNR. For example, multiple ATFQs can occur if different carriers in the itinerary do not have interline
e-ticket agreements or have no ticketing agreements at all.

Elements of a Stored Fare
Two processes are invoked when storing a fare in a PNR:

1. A fare quote is generated for the booked itinerary, passengers, and classes of service.

2. The fare quote is saved in the PNR.

Because the stored fare request actually generates a new fare quote, you must verify that the saved fare
price matches the expected price, which may have been displayed in an earlier fare quote or in the
shopping process. Also, all of the information relevant to the fare must be included in the request,
including:

 Descriptions of the passenger types.

 Fare types to be considered (published, private, etc.)

 Private fare information, if needed (Pseudo City Code (PCC), Private Fares account code, etc.)

 Pricing modifiers, such as commission and discounts.

Additional modifiers that do not directly affect the fare price are also required for certain negotiated fares.
These modifiers include:

 Ticket designators.

 Endorsement boxes.

 Bulk indicator.

 Net Fare indicator.

 Tour codes.

Issuing a Ticket on the Apollo CRS 3
Travelport

Simple Stored Fare Format
Use the following format to store a fare if an itinerary is a simple published fare with adult passengers and
no other special modifiers:

<PNRBFManagement_#>

<StorePriceMods/>

</ PNRBFManagement_#>

Passenger Description

The preceding request assumes that:

1. All of the passengers are adults.

2. Only published fares will be considered.

3. No other modifiers are required.

If an application supports additional passenger types, such as infants, then descriptions of the
passengers are required in the request.

The following request includes a passenger description:

<StorePriceMods>

 <PassengerType>

 <PsgrAry>

 <Psgr>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 <PTC>ADT</PTC>

 <Age><![CDATA[]]></Age>

 <PricePTCOnly>N</PricePTCOnly>

 </Psgr>

 </PsgrAry>

 </PassengerType>

</StorePriceMods>

Information about each passenger is contained in a<Psgr> element. The system allows passengers to
with the same last name to be grouped together; however, from an application standpoint, it is better to
treat each passenger independently. To list passengers separately, the <LNameNum> and
<AbsNameNum> values increment for each passenger, and the <PsgrNum> is always 01.

Issuing a Ticket on the Apollo CRS 4
Travelport

To list passengers with the same last name together, the request looks similar to the following request for
an adult and an infant without a seat:

<StorePriceMods>

 <PassengerType>

 <PsgrAry>

 <Psgr>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 <PTC>ADT</PTC>

 <Age><![CDATA[]]></Age>

 <PricePTCOnly>N</PricePTCOnly>

 </Psgr>

 <Psgr>

 <LNameNum>02</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>02</AbsNameNum>

 <PTC>INF</PTC>

 <Age>01</Age>

 <PricePTCOnly>N</PricePTCOnly>

 </Psgr>

 </PsgrAry>

 </PassengerType>

</StorePriceMods>

Each passenger type requires an <AssocPsgrs> element, which duplicates the passenger specifications
for other processing. As well, if the request contains modifiers, a <PICOptMod> element is required to
apply the modifier to the fare. <AssocPsgrs> and <PICOptMod> usually follow the passenger description
in the preceding example, and look similar to:

 <AssocPsgrs>

 <PsgrAry>

 <Psgr>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 </Psgr>

 </PsgrAry>

 </AssocPsgrs>

 <PICOptMod>

 <PIC>ADT</PIC>

 </PICOptMod>

Adult passenger

Used for passenger type code fares.
Y = use PTC filed fares only.

Issuing a Ticket on the Apollo CRS 5
Travelport

 <AssocPsgrs>

 <PsgrAry>

 <Psgr>

 <LNameNum>02</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>02</AbsNameNum>

 </Psgr>

 </PsgrAry>

 </AssocPsgrs>

 <PICOptMod>

 <PIC>INF</PIC>

 </PICOptMod>

Private Fare Information
Add a <SegSelection> element to the request following the passenger information to quote Private Fares
(negotiated fares and Web fares) as well as published fares. <SegSelection> also creates ATFQs for a
subset of the entire itinerary. See Multiple AFTQs, on page 11, for details.

To allow the whole itinerary to use Private Fares (including Web fares), <SegSelection> is formatted
similar to:

<SegSelection>

 <ReqAirVPFs>Y</ReqAirVPFs>

 <SegRangeAry>

 <SegRange>

 <StartSeg>00</StartSeg>

 <EndSeg>00</EndSeg>

 <FareType>P</FareType>

 <PFQual>

 <CRSInd>1V</CRSInd>

 <PCC>yourPCC</PCC>

 <AirV/>

 <Acct>yourAcctCode</Acct>

 <Contract/>

 <Type>V</Type>

 <PublishedFaresInd>Y</PublishedFaresInd>

 <PFTypeRestrict/>

 <AcctCodeRestrict>N</AcctCodeRestrict>

 <Spare1/>

 </PFQual>

 </SegRange>

 </SegRangeAry>

</SegSelection>

Infant passenger

00 indicates the
entire itinerary

Private Fare
information follows

Private Fare information

Y = Include published
N = Private Fares only

Y = all Private Fares
N = Private Fares that
match account code only

Issuing a Ticket on the Apollo CRS 6
Travelport

To apply the Private Fare modifier to the resulting fare, the request must include <PFMod>:

 <PFMod>

 <PCC>yourPCC</PCC>

 <Acct>yourAcctCode</Acct>

 <Contract/>

 </PFMod>

To specify the type of fares to be process, the request must include <DocProdFareType>.

 <DocProdFareType>

 <Type>I</Type>

 </DocProdFareType>

Stored Fare Request
The following example shows a typical stored fare request portion of a PNRBFManagement_# request for
an online booking application. The request stores a fare for the booked itinerary with two passengers: one
adult and one infant without a seat. It allows both published and Private fares, and expects the entire
itinerary fare to be stored in one ATFQ.

Note that the request does not contain special modifiers, which are discussed in Fare Modifiers on page 8.

<StorePriceMods>

 <PassengerType>

 <PsgrAry>

 <Psgr>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 <PTC>ADT</PTC>

 <Age><![CDATA[]]></Age>

 <PricePTCOnly>N</PricePTCOnly>

 </Psgr>

 <Psgr>

 <LNameNum>02</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>02</AbsNameNum>

 <PTC>INF</PTC>

 <Age>01</Age>

 <PricePTCOnly>N</PricePTCOnly>

 </Psgr>

 </PsgrAry>

Possible Values:
I = All available fares.
N = Public fares only.
P = Private fares only (all types).
A = Airline Private Fares only.
G = Agency Private Fares only.

Issuing a Ticket on the Apollo CRS 7
Travelport

 </PassengerType>

 <AssocPsgrs>

 <PsgrAry>

 <Psgr>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 </Psgr>

 </PsgrAry>

 </AssocPsgrs>

 <PICOptMod>

 <PIC>ADT</PIC>

 </PICOptMod>

 <AssocPsgrs>

 <PsgrAry>

 <Psgr>

 <LNameNum>02</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>02</AbsNameNum>

 </Psgr>

 </PsgrAry>

 </AssocPsgrs>

 <PICOptMod>

 <PIC>INF</PIC>

 </PICOptMod>

 <SegSelection>

 <ReqAirVPFs>Y</ReqAirVPFs>

 <SegRangeAry>

 <SegRange>

 <StartSeg>00</StartSeg>

 <EndSeg>00</EndSeg>

 <FareType>P</FareType>

 <PFQual>

 <CRSInd>1V</CRSInd>

 <PCC>yourPCC</PCC>

 <AirV/>

 <Acct>yourAcctCode</Acct>

 <Contract/>

 <Type>V</Type>

 <PublishedFaresInd>Y</PublishedFaresInd>

Issuing a Ticket on the Apollo CRS 8
Travelport

 <PFTypeRestrict/>

 <AcctCodeRestrict>N</AcctCodeRestrict>

 <Spare1/>

 </PFQual>

 </SegRange>

 </SegRangeAry>

 </SegSelection>

 <PFMod>

 <PCC>yourPCC</PCC>

 <Acct>yourAcctCode</Acct>

 <Contract/>

 </PFMod>

 <PlatingAirVMods>

 <PlatingAirV>UA</PlatingAirV>

 </PlatingAirVMods>

 <DocProdFareType>

 <Type>I</Type>

 </DocProdFareType>

</StorePriceMods>

Fare Modifiers
When carriers provide negotiated fares, they often specify exactly how those fares are to be stored.
Usually, one or more modifiers must be added to the stored fare request.

Note: Many modifiers print on the ticket.

Private Fares

Many Terminal formats for storing fares start with a format similar to:

T:$B-SS004

or

T:$B-SS004/:P

The –SS004 portion of the format is an account code that indicates a Private Fare, SS004 can be

inserted into <PFQual> and <PFMod> as shown in the following Structured Data sample:

<SegSelection>

 <ReqAirVPFs>Y</ReqAirVPFs>

 <SegRangeAry>

 <SegRange>

 <StartSeg>00</StartSeg>

 <EndSeg>00</EndSeg>

Add this element to specify
the plating carrier (required
on Galileo)

Issuing a Ticket on the Apollo CRS 9
Travelport

 <FareType>P</FareType>

 <PFQual>

 <CRSInd>1V</CRSInd>

 <PCC>PCC</PCC>

 <AirV/>

 <Acct>SS004</Acct>

 <Contract/>

 <PublishedFaresInd>Y</PublishedFaresInd>

 <Type>A</Type>

 </PFQual>

 </SegRange>

 </SegRangeAry>

 </SegSelection>

 <PFMod>

 <Acct>SS004</Acct>

 <PCC>PCC</PCC>

 <Contract/>

 </PFMod>

IT Tour Code

Tour codes, indicated in terminal formats by the inclusion of /ITtourCode, can also be added to

<StorePriceMods>. This value prints on the ticket. The element for a tour code entry is:

<TourCode>

 <Rules>tourCode</Rules>

</TourCode>

Commission Modifier

A commission modifier overrides the commission table stored in Apollo and Galileo, or adds a
commission when no stored information exists. The commission modifier allows you to add a percentage
or dollar amount, and is indicated by /Z in a Terminal format.

The following sample shows a percentage with the percentage set to zero. In <StorePriceMods>, add:

<CommissionMod>

 <Percent>00</Percent>

</CommissionMod>

The following sample shows a dollar amount. In <StorePriceMods>, add:

<CommissionMod>

 <Amt>10.00</Amt>

</CommissionMod>

Issuing a Ticket on the Apollo CRS 10
Travelport

Generic Modifiers

In addition to the Private Fares, IT Tour Code, and Commission modifiers, a number of additional entries
are included in many terminal formats. A /G. in Terminal Data indicates a generic ticket modifier. In

Terminal Data, multiple generic modifiers are separated by the end item character.

Bulk Ticket

Include the following element in <StorePriceMods> to indicate a bulk ticket (Terminal format GB):

<BulkTicket/>

Endorsement Box

Include the following element in <StorePriceMods> to indicate an endorsement box (Terminal format EB):

<EndorsementBox>

 <Endors1>FEE@FOR@CHANGE</Endors1>

 <Endors2>CANCEL</Endors2>

 <Endors3>VALID@AA@ONLY</Endors3>

</EndorsementBox>

Up to three endorsement box entries can be included, using the Endors1, Endors2 and Endors3 tags.
Notice that spaces are replaced by the @ character within an endorsement box entry.

Ticket Designator

Include the following element in <StorePriceMods> to indicate a ticket designator (Terminal format TD).

<SegNum> indicates the segment the designator is related to, and has a <SegNum> of ‘0’ when not
related to a specific segment.

<TicketDesignator>

 <SegNumAry>

 <SegNumInfo>

 <SegNum>0</SegNum>

 <TkDesignator>ticketDes</TkDesignator>

 </SegNumInfo>

 </SegNumAry>

</TicketDesignator>

Some carriers file their fares using a Net Fare format, which is equivalent to :C in terminal format. Include

the following <NetFaresOnly> element in <StorePriceMods> to store a net fare:

 <GenQuoteInfo>

 <SellCity/>

 <TktCity/>

 <AltCurrency/>

 <EquivCurrency/>

 <TkDt/>

 <BkDtOverride/>

 <EUROverride/>

Issuing a Ticket on the Apollo CRS 11
Travelport

 <LCUOverride/>

 <TkType/>

 <AltCitiesRequired/>

 <AltDatesRequired/>

 <NetFaresOnly>Y</NetFaresOnly>

 </GenQuoteInfo>

Passenger Type Code (PTC)

While passenger type codes typically describe the passenger type (adult, child, senior, etc.) some
carriers use passenger type codes to file specific fares. In Terminal formats, this usage is indicated by:

T:$B*DP8

In the preceding example, the passenger type code is DP8, which indicates a discount of 8%. This PTC
must be used in all of the descriptions of the passengers, and requires multiple PTC fields. If only PTC
fares are to be considered, then the <PricePTCOnly> element in the passenger description is also set to
‘Y’. In Structured Data, the Passenger Type Code is in <PassengerType>.

<PassengerType>

 <PsgrAry>

 <Psgr>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 <PTC>DP8</PTC>

 <Age/>

 <PricePTCOnly/>

 <DiscOrIncrInd/>

 <AmtOrPercent/>

 <PersonalGeoType/>

 <PersonalGeoData/>

 <TIC/>

 </Psgr>

 </PsgrAry>

</PassengerType>

Multiple AFTQs
As noted previously, up to eight ATFQs can be stored in one PNR. Multiple ATFQs are typically stored
because more than one carrier is included in the itinerary, and the specific combination of carriers does
not have interline E-ticketing agreements, or does not have ticketing agreements of any kind.

Interline ticketing and E-ticketing agreements between carriers vary considerably. Each carrier must be
handled separately when storing the fare and ticketing. Essentially, each carrier is stored in a different
ATFQ. At ticketing, the ATFQ for each carrier is located and ticketed.

Issuing a Ticket on the Apollo CRS 12
Travelport

Storing Partial or Multiple ATFQs
Segment selection is used to store an ATFQ for part of the itinerary. or to store multiple ATFQs for a PNR.
In the stored price request, the segments that are to be grouped together are specified in the
<SegSelection> and <AssocSegs> elements:

 <SegSelection>

 <ReqAirVPFs>Y</ReqAirVPFs>

 <SegRangeAry>

 <SegRange>

 <StartSeg>01</StartSeg>

 <EndSeg>02</EndSeg>

 <FareType>P</FareType>

 <PFQual>

 <CRSInd>1V</CRSInd>

 <PCC>188I</PCC>

 <AirV/>

 <Acct>yourAcctCode</Acct>

 <Contract/>

 <PublishedFaresInd>Y</PublishedFaresInd>

 <Type>V</Type>

 </PFQual>

 </SegRange>

 </SegRangeAry>

 </SegSelection>

 <AssocSegs>

 <SegNumAry>

 <SegNum>01</SegNum>

 <SegNum>02</SegNum>

 </SegNumAry>

 </AssocSegs>

If the segments that need to be grouped are not contiguous, multiple entries in the <SegRangeAry>
element are needed.

For example, the booked itinerary is:

Outbound:

DL 1790 EWR-ATL and FL 307 ATL-DEN

Inbound:

FL 308 DEN-ATL and DL 1110 ATL-EWR

And the fare is to be stored for the Delta portion of the itinerary (segments 1 and 4). The selection then
looks similar to:

Selects the first two
segments of the itinerary

Segment selection is
repeated here

Issuing a Ticket on the Apollo CRS 13
Travelport

 <SegSelection>

 <ReqAirVPFs>Y</ReqAirVPFs>

 <SegRangeAry>

 <SegRange>

 <StartSeg>01</StartSeg>

 <EndSeg>01</EndSeg>

 <FareType>P</FareType>

 <PFQual>

 <CRSInd>1V</CRSInd>

 <PCC>188I</PCC>

 <AirV/>

 <Acct>yourAcctCode</Acct>

 <Contract/>

 <PublishedFaresInd>Y</PublishedFaresInd>

 <Type>V</Type>

 </PFQual>

 </SegRange>

 <SegRange>

 <StartSeg>04</StartSeg>

 <EndSeg>04</EndSeg>

 <FareType>P</FareType>

 <PFQual>

 <CRSInd>1V</CRSInd>

 <PCC>188I</PCC>

 <AirV/>

 <Acct>yourAcctCode</Acct>

 <Contract/>

 <PublishedFaresInd>Y</PublishedFaresInd>

 <Type>V</Type>

 </PFQual>

 </SegRange>

 </SegRangeAry>

 </SegSelection>

 <AssocSegs>

 <SegNumAry>

 <SegNum>01</SegNum>

 <SegNum>04</SegNum>

 </SegNumAry>

 </AssocSegs>

First Segment,
Outbound

Last Segment,
Return

Issuing a Ticket on the Apollo CRS 14
Travelport

The ATFQ for AirTran (segments 2 and 3) can be stored in the same manner as the Delta example, but
storing is not required if a paper ticket is not issued (see Non-Standard Airline Carriers on page 18).

To verify that the fare has not increased due to the faring of the selected segments, the prices from
multiple ATFQs should be totaled and checked against the expected total fare.

Updating a Stored Fare
Ticketing modifiers can be added to an existing stored fare using the DocProdFareRequote_# request.
After a PNR is retrieved, modifiers are updated using the appropriate portions of the following request.
The DocProdFareRequote_# request adds a commission modifier, a tour code, a ticket designator,
endorsement boxes, and a bulk indicator.

<DocProdFareRequote_#>

 <UpdateModifiersMods>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <CommissionMod>

 <Percent>00</Percent>

 </CommissionMod>

 <TourCode>

 <Rules>ABCD</Rules>

 </TourCode>

 <TicketDesignator>

 <SegNumAry>

 <SegNumInfo>

 <SegNum>0</SegNum>

 <TkDesignator>E123</TkDesignator>

 </SegNumInfo>

 </SegNumAry>

 </TicketDesignator>

 <EndorsementBox>

 <Endors1>TEST@FOR@ONETRAVEL</Endors1>

 <Endors2>LINE2</Endors2>

 <Endors3>LINE@THREE@END</Endors3>

 </EndorsementBox>

 <BulkTicket />

 </UpdateModifiersMods>

</DocProdFareRequote_#>

Issuing a Ticket on the Apollo CRS 15
Travelport

The update replaces all of the ticket modifiers. Therefore, to update one modifier element, all of the
existing modifiers must be repeated. Any modifier values that that are not repeated will be deleted and
replaced with blank values.

Canceling a Stored Fare
To replace a stored fare with a new fare, the existing stored fare must be deleted from the PNR before
the new fare is stored. The request to cancel the existing fare is:

 <PNRBFManagement_#>

 <CancelStoredFareMods>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>01</FareNum>

 </FareNumAry>

 </FareNumInfo>

 </CancelStoredFareMods>

 </PNRBFManagement_#>

A successful response looks similar to:

 <PNRBFManagement_#>

 <CancelStoredFare>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <DPOK>

 </DPOK>

 </CancelStoredFare>

 </PNRBFManagement_#>

Canceling Multiple Fares

If a PNR contains more than one fare, all fares can be canceled at the same time with this request:

 <PNRBFManagement_#>

 <CancelStoredFareMods>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 <FareNum>2</FareNum>

 </FareNumAry>

 </FareNumInfo>

This indicates success

Issuing a Ticket on the Apollo CRS 16
Travelport

 </CancelStoredFareMods>

 </PNRBFManagement_#>

A successful response to a multiple cancel looks similar to:

 <PNRBFManagement_#>

 <CancelStoredFare>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <DPOK>

 </DPOK>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>2</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <DPOK>

 </DPOK>

 </CancelStoredFare>

 </PNRBFManagement_#>

After the existing fare or fares have been deleted, the new fare is stored as described in Updating a
Stored Fare on page 16.

Issuing a Ticket on the Apollo CRS 17
Travelport

Verifying a Successful Stored Fare
The response to a stored fare request is the entire set of fare information. Within this response is an
indicator that tells you that the fare was stored properly (assuming the fare quote did not generate an
error). A value of ‘Y’ in <FareFiledOKInd> indicates that the fare was successfully stored.

If the fare is not stored successfully, additional indicators within the <FilingStatus> element can help to
identify the cause of a stored fare failure. For example:

<FilingStatus>

 <UniqueKey>0000</UniqueKey>

 <PsgrMismatchInd>N</PsgrMismatchInd>

 <NeedPlatingCarrierInd>Y</NeedPlatingCarrierInd>

 <NoNamesInd>N</NoNamesInd>

 <OpenSegInd>N</OpenSegInd>

 <TkDtInd>N</TkDtInd>

 <ClassOverrideInd>N</ClassOverrideInd>

 <RetTripInd>N</RetTripInd>

 <NeedRebookInd>N</NeedRebookInd>

 <DecMismatchInd>N</DecMismatchInd>

 <CurrencyMismatchInd>N</CurrencyMismatchInd>

 <AmendedItinInd>N</AmendedItinInd>

 <PseudoItinInd>N</PseudoItinInd>

 <TooManyTaxesInd>N</TooManyTaxesInd>

 <BaseFareTooBigInd>N</BaseFareTooBigInd>

 <BookingDtInd>N</BookingDtInd>

 <PFMismatchInd>N</PFMismatchInd>

 <NotFullGuarInd>N</NotFullGuarInd>

 <FareFiledOKInd>N</FareFiledOKInd>

 <DocProdErrTextInd>N</DocProdErrTextInd>

 <Spare1>NNNNN</Spare1>

 <Spare2>NNNNNNNN</Spare2>

</FilingStatus>

Fare did not store

Plating carrier
needed

Issuing a Ticket on the Apollo CRS 18
Travelport

Non-Standard Airline Carriers

Non-standard carriers (“ticketless” carriers and guaranteed payment carriers) do not use the normal
ATFQ and ticketing process:

 An ATFQ cannot be stored for any ticketless carrier.

 Most guaranteed payment carriers cannot store an ATFQ; however, if the default plating carrier

logic is turned on (PLAT-Y), an agent can store an ATFQ for a guaranteed payment carrier.

And, although an ATFQ can be stored for some guaranteed payment carriers, this process fails for other
non-standard carriers.

Therefore, the recommended approach for non-standard carriers is to:

 Store ATFQs only for standard carriers.

 Store fare information for non-standard carriers in a remark to facilitate invoice generation and
customer service.

Note: Find information for a specific carrier using the S*AIR/cc format in Focalpoint, where cc is the

carrier code.

To use the ticketless form of booking for ticketless carriers, the form of payment must be included in an
SSR (Special Service Request) associated with a carrier segment in the PNR. The SSR is an item in the
Secondary PNR Data section <PNRBFSecondaryBldChgMods>, and looks similar to:

<Item>

 <DataBlkInd>S</DataBlkInd>

 <SSRQual>

 <EditTypeInd>A</EditTypeInd>

 <AddQual>

 <SSRCode>OTHS</SSRCode>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 <FltNum>0308</FltNum>

 <OpSuf/>

 <AirV>XX</AirV>

 <Dt>20070306</Dt>

 <BIC>R</BIC>

 <StartAirp>DEN</StartAirp>

 <EndAirp>ATL</EndAirp>

 <Text>VI4444333322221111/D1207/TEST JOE</Text>

 </AddQual>

 </SSRQual>

</Item>

Card type

Card number

Passenger name

Carrier

Must be OTHS

Passenger reference

Expiration

Issuing a Ticket on the Apollo CRS 19
Travelport

You can store the fare with an itinerary all on one carrier (e.g., XX in the preceding sample), but the form
of payment is always the SSR shown above for a ticketless transaction. For carriers that are considered
ticketless, there is no need to specifically issue a ticket.

To properly book itineraries on other carriers before the PNR is end transacted, a form of payment must
be included in an SSR associated with the carrier’s segment. The SSR is an item in the PNR Secondary
Data section, and looks similar to:

 <Item>

 <DataBlkInd>S</DataBlkInd>

 <SSRQual>

 <EditTypeInd>A</EditTypeInd>

 <AddQual>

 <SSRCode>GUAR</SSRCode>

 <LNameNum>01</LNameNum>

 <PsgrNum>01</PsgrNum>

 <AbsNameNum>01</AbsNameNum>

 <FltNum>0126</FltNum>

 <OpSuf/>

 <AirV>YY</AirV>

 <Dt>20070306</Dt>

 <BIC>R</BIC>

 <StartAirp>DEN</StartAirp>

 <EndAirp>JFK</EndAirp>

 <Text>VI4444333322221111/D1207/TEST JOE</Text>

 </AddQual>

 </SSRQual>

 </Item>

Also, it is best not to store a fare for these itineraries, as the stored price request will return a NO
VALIDATING AIRLINE FOUND error if an agency does not have plating carrier logic (PLAT-N) turned on.
If an agency is turned on to plating carrier logic (PLAT-Y), and the itinerary includes only a guaranteed
payment carrier, the stored price request returns a fare quote. Ticketing is not allowed.

Card type

Card number Passenger name

Carrier

Must be GUAR

Passenger reference

Expiration

Issuing a Ticket on the Apollo CRS 20
Travelport

Ticketing

If the fares are stored properly in a PNR, ticketing is a relatively simple process, although there are numerous
opportunities for ticketing errors. The potential for errors makes it difficult to develop a ticketing application
that can handle every possible ticketing scenario. The typical approach for an online application is to handle
the bulk of the ticketing for the agency environment, and to send ticketing failures to a queue for agent
intervention. The sophistication of what can be ticketed depends to a large degree on the sophistication of the
logic that stores the fares using the methods described in preceding sections.

The Ticketing Sequence
Ticketing an existing PNR is a multi-step process that requires careful application development. The
steps to ticket a PNR are:

1. Start a Host (CRS) session.

2. Retrieve the PNR.

3. Verify that the PNR is ready to ticket.

4. Link to one or more printers.

5. Ticket the PNR.

Ticketing is done within a Host session, and a PNR must be ready for ticketing before a ticketing attempt
is made. At a minimum, the PNR must have:

 At least one air segment.

 A valid stored fare.

 A form of payment (FOP).

In addition:

 The PNR must have been end transacted.

 The PNR must not have been ticketed already.

 The PNR must not be in use by any other application.

 A valid ticket printer must be online and ready.

Starting a Host Session
Start a Host session by calling the BeginSession method of the XML Select Web Services (XWS). Your
Host Access Profile (HAP) is required to access XWS. The BeginSession method returns a session token,
which is then used for the subsequent session requests (see the Galileo API Developer Notes: Galileo
Web Services Host Sessions for details).

The SOAP body for this request looks similar to:

<soap:Body>

 <BeginSession xmlns="http://webservices.galileo.com">

Issuing a Ticket on the Apollo CRS 21
Travelport

 <Profile>yourHAP</Profile>

 </BeginSession>

</soap:Body>

If you have established a Web Services proxy stub by using SOAP tools for your environment, the call to
that stub looks similar to:

yourStubName.BeginSession(yourHAP);

The response is a very long string that is the session token. The SOAP body of the response looks similar
to:

<soap:Body>

 <BeginSessionResponse xmlns="http://webservices.galileo.com">

 <BeginSessionResult>veryLongTokenStringHere</BeginSessionResult>

 </BeginSessionResponse>

</soap:Body>

Your application must save this token for use in additional session requests.

Retrieving the PNR
After starting a Host session, you can work on items stored in a session, such as a new or retrieved PNR.
For example, to retrieve a PNR into a session, use the following XML request:

<PNRBFManagement_#>

 <PNRBFRetrieveMods>

 <PNRAddr>

 <FileAddr/>

 <CodeCheck/>

 <RecLoc>recordLocator</RecLoc>

 </PNRAddr>

 </PNRBFRetrieveMods>

 <FareRedisplayMods>

 <DisplayAction>

 <Action>I</Action>

 </DisplayAction>

 </FareRedisplayMods>

</PNRBFManagement_#>

The PNRBFManagement_# request uses the SubmitXmlOnSession method of XWS, not to the non-
sessioned SubmitXML. The SOAP body for this request is:

<soap:Body>

 <SubmitXmlOnSession xmlns="http://webservices.galileo.com">

 <Token> veryLongTokenStringHere </Token>

 <Request>XmlRequestFormatShownAbove</Request>

Retrieves the PNR

This optional section
retrieves fare information
in the PNR.

Use I to retrieve all ATFQs

Issuing a Ticket on the Apollo CRS 22
Travelport

 <Filter><_ xmlns=""/></Filter>

 </SubmitXmlOnSession>

</soap:Body>

The PNRBFManagement_# request returns the XML representation of the PNR and the ATFQs. The
PNR now resides in the session and can be operated on.

If you are using a proxy stub, your method call looks similar to:

yourStubName.SubmitXmlOnSession (veryLongTokenStringHere,

 XmlRequestFormatShownAbove,

 “<_ xmlns=""/>”);

All follow on requests also use the SubmitXmlOnSession call.

Verifying a PNR is Ready For Ticketing
After the PNR is retrieved, it should be examined to verify that it is ready to be ticketed. Before ticketing,
check the PNR to confirm:

 A form of payment (FOP).

 A stored fare.

 That the PNR has not been ticketed.

 That the PNR is not in use.

 Vendor confirmations.

Check the PNR for a Form of Payment (FOP)
A PNR cannot be ticketed without a form of payment. The FOP for an online application is usually the
traveler’s credit card. If an agency is acting as the merchant of record, the form of payment is usually a
check. The FOP is commonly entered during the booking process as an item in the Secondary Data
section of the PNR. The XML for entering an FOP item is:

 <Item>

 <DataBlkInd>F</DataBlkInd>

 <FOPQual>

 <EditTypeInd>A</EditTypeInd>

 <AddChgQual>

 <TypeInd>2</TypeInd>

 <CCQual>

 <CC>VI</CC>

 <ExpDt>1206</ExpDt>

 <ExtTxt/>

 <Acct>4444333322221111</Acct>

 </CCQual>

Card type

Card number

Expiration

Issuing a Ticket on the Apollo CRS 23
Travelport

 </AddChgQual>

 </FOPQual>

 </Item>

After retrieving a PNR, the form of payment is contained in either the <CreditCardFOP> element or the
<CheckFOP> element. If both of these elements are null, then a form of payment has not been included
in the PNR and ticketing will fail.

Check the PNR for a Stored Fare
The PNR must contain a stored fare. To determine if the PNR contains a stored fare, examine the value
of the <FareDataExistsInd> element within the <GenPNRInfo> element. A value of ‘Y’ indicates that at
least one fare was stored.

Note: A value of ‘Y’ does not necessarily mean that PNR is ready to be ticketed, but a value of ‘N’
indicates that the PNR is not ready to be ticketed (see Fare Verification on page 24 for details).

Confirm that the PNR Was Not Previously Ticketed

There are two elements that indicate a PNR has already been ticketed:

<TkNumExistInd>

<PNRBFTicketedInd>

If the value of these elements is not ‘N’, which indicates that no ticketing information exists, it is best to
end transact the PNR and send it to a queue for manual processing. Do not attempt to continue the
ticketing process if either of the two elements listed above are set to ‘Y’, as the ticketing process will also
fail.

Confirm that the PNR is Not in Use
Check that the value of the <InUseInd> element within the <GenPNRInfo> element is ‘N’ to ensure other
systems (typically the carriers involved in the itinerary) are not currently modifying the PNR. If the value of
<InUseInd> is not ‘N’, do not proceed with ticketing.

Check for Vendor Confirmations
Although vendor confirmations are not strictly required for ticketing, issuing a ticket without proper vendor
confirmations can result in debit memos from some carriers. Vendor confirmations are located in an
element that looks similar to:

 <VndRecLocs>

 <RecLocInfoAry>

 <RecLocInfo>

 <TmStamp>1735</TmStamp>

 <DtStamp>20061128</DtStamp>

 <Vnd>AA</Vnd>

 <RecLoc>BDIHHR</RecLoc>

 </RecLocInfo>

 </RecLocInfoAry>

 </VndRecLocs>

Issuing a Ticket on the Apollo CRS 24
Travelport

Depending on the itinerary, there can be more than one confirmation. The carrier code (<Vnd>AA</Vnd>)
determines the carrier providing the confirmation. If you do not have a vendor confirmation, it is best not
to ticket. You may not have a vendor confirmation because:

 The link was down when the ticket was booked.

 The vendor has not yet built the PNR.

 The ticket was booked with a passive segment, and there was no passive segment notification to
the carrier.

Fare Verification
If a PNR is ticketed soon after booking (within approximately 15 minutes), then the fare that was stored is
not likely to have changed, and fare verification is not needed. If a substantial amount of time has passed
between booking and ticketing, you must ensure that the fare is still valid before proceeding to ticketing
by verifying:

 The number of ATFQs.

 Each ATFQ.

Verify the Number of ATFQs
If the itinerary in a PNR has changed after the initial booking, it is possible one or more of the ATFQs is
no longer valid. It is also possible that not all segments have stored fares.

To verify that all segments are covered by an ATFQ, the air segments in the PNR must be compared with
the segments in the ATFQs. This comparison requires two steps:

1. Count the number of <AirSeg> elements in the PNR.

2. For each ATFQ, in the <DocProdDisplayStoredQuote> element, look in the <AssocSegs> child
element to see which segments are included in the ATFQ. Verify that each air segment is
included in an ATFQ.

<AssocSegs> looks like:

 <AssocSegs>

 <SegNumAry>

 <SegNum>1</SegNum>

 <SegNum>2</SegNum>

 </SegNumAry>

 </AssocSegs>

If any segment is missing from the ATFQs, the PNR is not ready to be ticketed. A fare quote for the
missing segment is needed, and the new fare must be stored. Because a missing segment in the ATFQs
can indicate a more serious problem with the PNR, it is best to send the PNR to a queue for agent
intervention.

Issuing a Ticket on the Apollo CRS 25
Travelport

Verify Each ATFQ

After the PNR has been retrieved, the <FareGuarCode> element for each fare must be reviewed to verify
it is set to ‘O’ for all ATFQs. ‘O’ indicates all stored fares are still valid and the PNR can be ticketed.

<FareGuarCode> is a child element of <AdditionalPsgrFareInfo> in <DocProdDisplayStoredQuote>. It looks
similar to:

 <AdditionalPsgrFareInfo>

 <FareGuarCode>O</FareGuarCode>

 <Status>U</Status>

 <TkNum/>

 <TkType/>

 <LNameNum>1</LNameNum>

 <PsgrNum>1</PsgrNum>

 <AbsNameNum/>

 <UnableTkStatus/>

 <InvoiceAlphaChars/>

 <InvoiceNum/>

 </AdditionalPsgrFareInfo>

A potentially invalid ATFQ is indicated if <FareGuarCode> is not ‘O’. An invalid ATFQ can be a sign of a
more serious problem with the PNR that requires agent intervention. In the GWS Help, see XML Select
Service > Transactions > DocProdFareManipulation_# and in the XML Select Help, see Transactions >
DocProdFareManipulation_#. Review the <FareGuarCode> field description in the response.

If you want to proceed, you can request that the system verify each of the ATFQs. The verify request
updates the stored fare with a new price, if the price has changed. It is a good practice to record the
existing fare prices before issuing the verify requests, so that you can compare the results after
verification.

Note that invalid ATFQs can be caused by a change in the itinerary, e.g., one segment can change from
class V to class H. Therefore, an itinerary change can result in a substantially different fare price.

The request looks similar to:

<DocProdFareRequote_#>

 <DocProdFareRequoteMods>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>001</FareNum>

 </FareNumAry>

 </FareNumInfo>

 </DocProdFareRequoteMods>

</DocProdFareRequote_#>

If there are multiple ATFQs in the PNR, one request is issued for each fare, even though it looks like
multiple <FareNum> entries are allowed in the <FareNumAry> array. A successful response to a verify
request looks similar to:

Must be ‘O’.

Issuing a Ticket on the Apollo CRS 26
Travelport

<DocProdFareRequote_# xmlns="">

 <DocProdFareRequote>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <DPOK>

 </DPOK>

 </DocProdFareRequote>

</DocProdFareRequote_#>

If a verify request fails, the response looks similar to the following, although many variations of the error
message can be returned.

<DocProdFareRequote_# xmlns="">

 <DocProdFareRequote>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <ErrText>

 <Err>D0000265</Err>

 <KlrInErr>0000</KlrInErr>

 <InsertedTextAry>

 </InsertedTextAry>

 <Text>UNABLE TO UPDATE FARE</Text>

 </ErrText>

 <ErrText>

 <Err>D0000039</Err>

 <KlrInErr>0000</KlrInErr>

 <InsertedTextAry>

 </InsertedTextAry>

 <Text>APPLICATION ERROR</Text>

 </ErrText>

 </DocProdFareRequote>

</DocProdFareRequote_#>

DPOK indicates success

Issuing a Ticket on the Apollo CRS 27
Travelport

If the ATFQ verify is successful, retrieve the PNR again and compare the new fare prices in the ATFQs
with the original prices. If the prices are different, it is best to ignore the changes and queue the PNR for
agent intervention.

Note: If the stored fare has a <FareGuarCode> value of ‘O’, but the fare is no longer available or no

longer valid, the PNR cannot be ticketed and must be queued for agent intervention.

Printer Linkage
Whether you issue E-tickets or paper tickets, your application must link to a printer. You can display the
printers linked to your set or Pseudo City Code (PCC) using the HMLDgtid or HMLDpcc terminal formats.

To link a ticket printer to the application, issue the TicketPrinterLinkage_# request.

Printer Link Request
<TicketPrinterLinkage_#>

 <LinkageUpdateMods>

 <PrinterParameters>

 <LNIATA>yourPrinter#</LNIATA>

 <Type>T</Type>

 </PrinterParameters>

 </LinkageUpdateMods>

</TicketPrinterLinkage_#>

Printer Link Response

A successful printer link response looks like the following example, with your LNIATA numbers:

<TicketPrinterLinkage_# xmlns="">

 <LinkageUpdate>

 <LNIATAInfo>

 <LNIATA>5EA121</LNIATA>

 </LNIATAInfo>

 <PrinterParameters>

 <LNIATA>F52201</LNIATA>

 <PrinterMode>D</PrinterMode>

 <StockNum/>

 <Type>T</Type>

 <ElectronicPrintInd/>

 <Status>U</Status>

 <ValidationInd/>

 <PCC/>

 </PrinterParameters>

 </LinkageUpdate>

</TicketPrinterLinkage_#>

U=Printer up
D=Printer down
B=Printer busy

Issuing a Ticket on the Apollo CRS 28
Travelport

After you link your PCC to a printer, it should remain linked. However, the link request can be issued
without error even if you are already linked. If multiple printers are needed, they can be linked in one
request, as shown:

<TicketPrinterLinkage_#>

 <LinkageUpdateMods>

 <PrinterParameters>

 <LNIATA>F12345</LNIATA>

 <Type>T</Type>

 </PrinterParameters>

 <PrinterParameters>

 <LNIATA>C12345</LNIATA>

 <Type>I</Type>

 </PrinterParameters>

 </LinkageUpdateMods>

</TicketPrinterLinkage_#>

Changing the Printer Status

If the printer returns a status of ‘D’ (Down), a request can be sent to change the printer status to ‘U’ (Up):

<TicketPrinterLinkage_#>

 <LinkageDefinitionMods>

 <ModifyPrinterStatus>

 <LNIATA>024F88</LNIATA>

 <Modifier>U</Modifier>

 </ModifyPrinterStatus>

 </LinkageDefinitionMods>

</TicketPrinterLinkage_#>

The response should be:

<TicketPrinterLinkage_# xmlns="">

 <LinkageDefinition>

 <DPOK>

 </DPOK>

 </LinkageDefinition>

</TicketPrinterLinkage_#>

Ticket Printer

Invoice Printer

Changes printer
status to Up.

DPOK indicates success.

Issuing a Ticket on the Apollo CRS 29
Travelport

Issuing Tickets
If the PNR is ready and any printers are linked and ready to print, it is time to ticket. The ticketing request
must be issued within the same session that the PNR was retrieved.

Ticketing Request

The DocProdFareManipulation_# request issues a ticket for the first ATFQ in the PNR:

<DocProdFareManipulation_#>

 <TicketingMods>

 <ElectronicTicketFailed>

 <CancelInd>Y</CancelInd>

 <IssuePaperTkInd>N</IssuePaperTkInd>

 <IssuePaperTkToSTP/>

 <STPlocation/>

 </ElectronicTicketFailed>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <TicketingControl>

 <TransType>TK</TransType>

 </TicketingControl>

 </TicketingMods>

</DocProdFareManipulation_#>

Ticketing Response

A successful ticketing response looks similar to:

<DocProdFareManipulation_# xmlns="">

 <Ticketing>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <RecordLocator>

 <RecLoc>yourRecordLocator</RecLoc>

 </RecordLocator>

Cancel ticket transaction if E-
ticket fails – ‘Y’ or ‘N’.

Issue paper ticket if
E-ticket fails – ‘Y’ or
‘N’.

First ATFQ.

Issuing a Ticket on the Apollo CRS 30
Travelport

 <TextMsg>

 <Txt>ELECTRONIC MESSAGE DELIVERED</Txt>

 </TextMsg>

 <TextMsg>

 <Txt><![CDATA[TKT ISSUED TTL FARE USD 429.63]]></Txt>

 </TextMsg>

 <TextMsg>

 <Txt>PRICE APPLIES IF TICKETED BY: 10AUG05</Txt>

 </TextMsg>

 </Ticketing>

</DocProdFareManipulation_#>

If you have multiple ATFQs in the same PNR, you must ticket each one individually.

Ticketing Error Responses
The ticketing request can fail for any number of reasons, such as printer linkage or processing errors. The
first example indicates the error by including the <TransactionErrorCode> element. The last two
examples do not include this element, but are still ticketing failures. The key phrase to look for is
ELECTRONIC TICKETING TRANSACTION CANCELED (or CANCELLED).

Need Printer Linkage

<DocProdFareManipulation_# xmlns="">

 <TransactionErrorCode>

 <Domain>AppErrorSeverityLevel</Domain>

 <Code>1</Code>

 </TransactionErrorCode>

 <Ticketing>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <ErrText>

 <Err>D0000042</Err>

 <KlrInErr>0000</KlrInErr>

 <InsertedTextAry/>

 <Text>INVALID ND LINKAGE</Text>

 </ErrText>

 </Ticketing>

</DocProdFareManipulation_#>

Issuing a Ticket on the Apollo CRS 31
Travelport

Unable to Process

<DocProdFareManipulation_# xmlns="">

 <Ticketing>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <TextMsg>

 <Txt><![CDATA[VENDOR UNABLE TO PROCESS ETKT - 912-DL]]></Txt>

 </TextMsg>

 <RecordLocator>

 <RecLoc> |*NPB</RecLoc>

 </RecordLocator>

 <TextMsg>

 <Txt>ELECTRONIC TICKETING TRANSACTION CANCELED</Txt>

 </TextMsg>

 </Ticketing>

</DocProdFareManipulation_#>

Duplicate Names

<DocProdFareManipulation_# xmlns="">

 <Ticketing>

 <FareNumInfo>

 <FareNumAry>

 <FareNum>1</FareNum>

 </FareNumAry>

 </FareNumInfo>

 <TextMsg>

 <Txt><![CDATA[DUPLICATE NAMES IN PNR-MX]]></Txt>

 </TextMsg>

 <RecordLocator>

 <RecLoc> |*QJ1</RecLoc>

 </RecordLocator>

 <TextMsg>

 <Txt>ELECTRONIC TICKETING TRANSACTION CANCELED</Txt>

 </TextMsg>

 </Ticketing>

</DocProdFareManipulation_#>

Issuing a Ticket on the Apollo CRS 32
Travelport

Ending the Ticketing Process

When all the session transactions are complete, you should end the session. Ending the session releases
the GTID that was reserved when the session was started. If modifications were made to a PNR during
the session, be sure to End Transact (Finish) the PNR before ending the session.

Ending a Host Session
Use the EndSession method of XWS with the session token to end a session. The SOAP body for this

method is:

<soap:Body>

 <EndSession xmlns="http://webservices.galileo.com">

 <Token> veryLongTokenStringHere </Token>

 </EndSession>

</soap:Body>

The response is:

<soap:Body>

 <EndSessionResponse xmlns="http://webservices.galileo.com"/>

</soap:Body>

Issuing a Ticket on the Apollo CRS 33
Travelport

Voiding a Ticket

A ticket for a PNR can be voided if a ticket void request is sent after the PNR was ticketed. The sequence
to void a ticket is:

1. Start a Host session.

2. Retrieve the PNR.

3. Retrieve the ticket information for the PNR.

4. Request a ticket void for each ticket in the PNR.

5. End the Host session.

Starting a Host Session
Start a Host session by calling the BeginSession method of the XML Select Web Services (XWS), as
described previously. Again, this request returns a very long string, which is the session token. Your
application must save this token to use in additional session requests.

Retrieving the PNR
After you start a Host session, you can retrieve the PNR for which you want to void the ticket. Use the
following XML request format to retrieve a PNR into a session:

<PNRBFManagement_#>

 <PNRBFRetrieveMods>

 <PNRAddr>

 <FileAddr/>

 <CodeCheck/>

 <RecLoc>recordLocator</RecLoc>

 </PNRAddr>

 </PNRBFRetrieveMods>

</PNRBFManagement_#>

Retrieving the PNR Ticket Information
You must know the ticket number or numbers associated with the PNR to void a ticket. To retrieve the
ticket information, use the DocProdFareManipulation_# request:

<DocProdFareManipulation_#>

 <TicketNumbersMods/>

</DocProdFareManipulation_#>

Because you are in a Host session, you do not need to specify the PNR record locator.

The response to the DocProdFareManipulation_# request contains a section for each ticket in the PNR.
This section shows the ticket number and a numeric code for the airline, similar to:

<DocProdFareManipulation_# xmlns="">

Issuing a Ticket on the Apollo CRS 34
Travelport

 <TicketNumberData>

 <ETicketNum>

 <Name>TEST/JACK</Name>

 <FirstStockCtrl>00004608</FirstStockCtrl>

 <LastStockCtrl />

 <AirV>422</AirV>

 <FirstTkNum>9900296251</FirstTkNum>

 <LastTkNum />

 <ItinInvNum />

 <Crncy>USD</Crncy>

 <Fare><![CDATA[456.80]]></Fare>

 <TkType>E</TkType>

 <Dt>07FEB</Dt>

 <Tm>1646</Tm>

 </ETicketNum>

 <ETicketNum>

 <Name>TEST/JILL</Name>

 <FirstStockCtrl>00004609</FirstStockCtrl>

 <LastStockCtrl />

 <AirV>422</AirV>

 <FirstTkNum>9900296252</FirstTkNum>

 <LastTkNum />

 <ItinInvNum />

 <Crncy>USD</Crncy>

 <Fare><![CDATA[456.80]]></Fare>

 <TkType>E</TkType>

 <Dt>07FEB</Dt>

 <Tm>1646</Tm>

 </ETicketNum>

 </TicketNumberData>

</DocProdFareManipulation_#>

If the PNR has not been ticketed, the response looks similar to the following code, which indicates that
ticket information cannot be returned:

<DocProdFareManipulation_# xmlns="">

 <TransactionErrorCode>

 <Domain>AppErrorSeverityLevel</Domain>

 <Code>1</Code>

 </TransactionErrorCode>

 <TicketNumberData>

The first ticket

Ticket number
Carrier number

The second ticket

Issuing a Ticket on the Apollo CRS 35
Travelport

 <ErrText>

 <Err>D0000042</Err>

 <KlrInErr>0000</KlrInErr>

 <InsertedTextAry>

 </InsertedTextAry>

 <Text>NO TIN REMARKS EXIST</Text>

 </ErrText>

 </TicketNumberData>

</DocProdFareManipulation_#>

Requesting a Void for Each Ticket in the PNR
After you retrieve the ticket information, you can send a void request for each ticket number returned in
the response. The request to void the first ticket, based on the example in Retrieving the PNR Ticket
Information, on page 33, is:

<TicketVoid_#>

 <VoidTicketMods>

 <TicketNumberRange>

 <AirNumeric>422</AirNumeric>

 <TkStockNum>9900296251</TkStockNum>

 </TicketNumberRange>

 </VoidTicketMods>

</TicketVoid_#>

A successful void looks similar to:

<TicketVoid_1_0 xmlns="">

 <VoidTicket>

 <DPOK>

 </DPOK>

 </VoidTicket>

</TicketVoid_1_0>

To continue with the example in Retrieving the PNR Ticket Information, a second void request is needed

for the second ticket. The format is the same as above, with a different value for <TkStockNum>.

Voiding Error Responses

If the void is not successful, several errors can be returned.

Ticket Already Voided

<TicketVoid_# xmlns="">

 <TransactionErrorCode>

 <Domain>AppErrorSeverityLevel</Domain>

 <Code>1</Code>

DPOK indicates success

Issuing a Ticket on the Apollo CRS 36
Travelport

 </TransactionErrorCode>

 <VoidTicket>

 <ErrText>

 <Err>D0008750</Err>

 <KlrInErr>0000</KlrInErr>

 <InsertedTextAry>

 </InsertedTextAry>

 <Text>VOID NOT ACCEPTED TKT ALREADY VOIDED</Text>

 </ErrText>

 </VoidTicket>

</TicketVoid_#>

Incorrect Ticket Number or Incorrect Airline Number

<TicketVoid_# xmlns="">

 <TransactionErrorCode>

 <Domain>AppErrorSeverityLevel</Domain>

 <Code>1</Code>

 </TransactionErrorCode>

 <VoidTicket>

 <ErrText>

 <Err>D0008720</Err>

 <KlrInErr>0000</KlrInErr>

 <InsertedTextAry>

 </InsertedTextAry>

 <Text>VOID NOT ACCEPTED 13 DIGIT TKT NBR</Text>

 </ErrText>

 </VoidTicket>

</TicketVoid_#>

or

<TicketVoid_# xmlns="">

 <TransactionErrorCode>

 <Domain>AppErrorSeverityLevel</Domain>

 <Code>1</Code>

 </TransactionErrorCode>

 <VoidTicket>

 <ErrText>

 <Err>D0008722</Err>

 <KlrInErr>0000</KlrInErr>

 <InsertedTextAry>

 </InsertedTextAry>

Issuing a Ticket on the Apollo CRS 37
Travelport

 <Text>VOID NOT ACCEPTED TICKET NUMBER NOT FOUND</Text>

 </ErrText>

 </VoidTicket>

</TicketVoid_#>

Ending a Host Session
When all the tickets have been voided, you must end the session to releases the GTID that was reserved
when the session was started. There is no need to End Transact (Finish) the PNR before ending the
session. In GWS, use the EndSession method of XWS, with the session token as previously described, to
end the session.

