

AI Developer Notes

Galileo Web Services Implementation Best Practices and
Development Guidelines

11 October 2011

Version 1.3

Galileo Web Services Implementation Best Practices and Development Guidelines ii
Travelport

THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO
TRAVELPORT

Copyright

Copyright © 2011 Travelport and/or its subsidiaries. All rights reserved.

Travelport provides this document for information purposes only and does not promise that the
information contained in this document is accurate, current or complete. This document is subject to
change without notice.. No part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or any means electronic or mechanical, including photocopying and recording for
any purpose other than the licensee’s personal use without the prior written permission of Travelport
and/or its subsidiaries.

Trademarks

Travelport and/or its subsidiaries may have registered or unregistered patents or pending patent
applications, trademarks copyright, or other intellectual property rights in respect of the subject matter of
this document. The furnishing of this document does not confer any right or licence to or in respect of
these patents, trademarks, copyright, or other intellectual property rights.

All other companies and product names are trademarks or registered trademarks of their respective
holders.

Galileo Web Services Implementation Best Practices and Development Guidelines iii
Travelport

Contents

Implementation Best Practices .. 1

Overview .. 1

Introduction and Objectives ... 1

Special HTTP Request Parameters .. 1

Expect 100-Continue ... 1

KeepAlive ... 2

Pre-Authenticate (.NET)... 2

GZIP Compression .. 2

Other Parameters .. 4

Maximum Connections .. 4

SYN Connection Limit .. 4

Protect Against SYN Flood Attacks (Windows XP/2003) .. 4

Special GWS Transaction Considerations .. 5

FareQuoteSuperBB <optimize> ... 5

Filters ... 5

Shopping Options .. 5

Development Guidelines .. 6

Overview .. 6

Reference Data ... 6

Session Management .. 6

Transactions .. 6

Web Services .. 7

Shopping ... 7

Development/Troubleshooting .. 7

Galileo Web Services Implementation Best Practices and Development Guidelines 1
Travelport

Implementation Best Practices

Overview
This section outlines options, recommendations, and best practices for implementing a software
application that uses Galileo Web Services (GWS). This section should be used in conjunction with the
Development Guidelines section.

This guide assumes familiarity with Galileo Web Services, SOAP, XML, Java and/or .Net programming
languages.

Introduction and Objectives
Galileo Web Services (GWS) allow developers to access most of the CRS content (air, hotel, and car)
using structured XML requests via a Web services wrapper.

It is very important to optimize the source code to get the maximum performance from the system. This
document can be used as a reference to realize a level of optimization that helps to achieve better
response times and reduce the system’s overhead at peak times.

The examples depicted in this document are in .NET or Java, but this code can be readily converted to
any appropriate programming language. Galileo does not provide any support on the techniques or
particulars of any programming language, and the examples within this document are for reference only.

The term “pipelining” is used as a synonym for the term “connection pooling”. However, the use of these
terms in this document is:

 Connection Pooling – Reusing an HTTP connection for multiple HTTP requests. When the connection
is idle, it is kept in a pool of available connections.

 Pipelining – Performing multiple, simultaneous HTTP requests on a single HTTP connection.

Java Developers can use the following URL (http://java.sun.com/j2se/1.5.0/docs/guide/net/http-
keepalive.html) to learn more about how to reuse TCP connections when calling a Web Service.

Special HTTP Request Parameters
The following recommendations for HTTP request parameters should be used when transacting with
GWS.

Expect 100-Continue

Overview

The purpose of the 100-Continue status (on the Internet, find and refer to section 10.1.1 of the Request
for Comment (RFC) 2616 for more details) is to allow a client who sends a request message with a
request body to determine if the origin server will accept the request (based on the request headers)
before the client sends the request body. It is highly inefficient for the client to send the body if the server
will reject the message without looking at the body.

Effect

Using 100-Continue adds anywhere from 25 to 150 milliseconds on a typical transaction, plus any
network propagation delays.

Galileo Web Services Implementation Best Practices and Development Guidelines 2
Travelport

Recommendation

It is recommended that 100-Continue be disabled when using GWS services. In Java, 100-Continue is
normally disabled by default. In .NET, the Expect100Continue property of the ServicePointManager
defaults to true.

Note: Expect100-Continue is valid only for HTTP 1.1 and above.

KeepAlive

Overview

When using the Connection: KeepAlive header on HTTP 1.1, the .NET Framework pools HTTP
connections. Connection pooling can provide some savings by eliminating the time to establish a
connection (when connections are available in the pool). However, depending on whether connections in
the pool get closed by the server or network, a Web Service call can get an exception with a connection
error. Using a new socket for every connection can add a little connection time (usually only milliseconds
if you have a fast network connection), but it is also more reliable because connection exceptions are less
likely to occur.

With Windows, the limit of 10 outstanding SYN packets can force the use of KeepAlive to gain
performance if more than 10 concurrent connections setups are anticipated. Windows XP SP2 and
Windows 2003 Server have this limit hard coded. You can change the limit for Windows 2000 and
Windows XP (up to SP1) by changing the registry; however, registry changes are not supported by
Microsoft.

Recommendation

It is not possible to make a generic recommendation as many factors, such as projected load and OS can
affect performance.

Pre-Authenticate (.NET)
Pre-Authenticate authenticates user credentials before they are sent to the server so the server does not
have to challenge the credentials. Therefore, the unnecessary exchange of packets is avoided, which
yields a small reduction in response times.

.NET developers must send the pre-authentication in the HTTP request to avoid receiving an
unauthorized error response from the server, which forces the client to resend the credentials in another
request. Setting up pre-authentication ensures the client application is only required to send one request
and wait for one host response, which improves the overall response time of the system. For further
information about pre-authenticating requests, please log on to the AIS support web site:

http://testws.galileo.com/GWSSample/Help/GWSHelp/gzip_c_sharp_.net_gziphttpwebrequest.cs.htm

GZIP Compression
It is important to consider the amount of data that needs to be sent back and forth for a GWS transaction.
The following table illustrates some examples of transactions that are suitable for compression and their
data traffic savings:

Transaction
Request with
no
compression

Request with
GZIP

Response
with no
compression

Response
with GZIP

Savings for
response

FareQuoteSuperBB

(round trip & KLR
2687 Bytes 704 Bytes 41034 Bytes 2714 Bytes 93%

Galileo Web Services Implementation Best Practices and Development Guidelines 3
Travelport

optimization)

FareQuoteSuperBB

(round trip with no KLR
optimization)

2413 Bytes 516 Bytes 219648 Bytes 10532 Bytes 95%

AirAvailability_6_5 644 Bytes 232 Bytes 26496 Bytes 1265 Bytes 95%

LocalDateTimeCT_6_0 120 Bytes 62 Bytes 112 Bytes 71 Bytes 47%

MultiSubmit with 2
SuperBB

6874 Bytes 806 Bytes 44600 Bytes 2705 Bytes 94%

The preceding table shows an average traffic size saving of 94% by using GZip compression for the
response. However, it is also significantly important for the requests. GZip becomes more effective for
large transactions such as FareQuoteSuperBB_# and AirAvailability_#, and when using MultiSubmit.

To implement GZip at request time, developers must set the HTTP header field Content-Encoding as
gzip to indicate to the Galileo server that the Web Service request is zipped and ensure that the request
is GZip compressed.

The client application must compress the request before encapsulating it into the HTTP request packet,
and unzip the response after it is received.

 .NET does not natively support sending GZip-compressed requests to Web Services. You must
implement this yourself using either third-party compression libraries (DLLs), such as SharpZipLib
(http://www.icsharpcode.net/OpenSource/SharpZipLib/), or the native
System.IO.Compression.GZipStream in .NET 2.0 and later.

 In Java, you can use GZIPOutputStream to zip the request.

Developers can also specify that they want to receive the host responses using GZip compression by
setting the HTTP request header field Accept-Encoding to gzip.

 Using .NET 1.0 and 1.1, you must use third-party compression libraries (DLLs) because these
versions do not support GZip by default.

 .NET 2.0 and later supports receiving GZip compression by default via the EnableDecompression
property of the HttpWebClientProtocol class. For earlier versions of .NET, you must use third-
party compression libraries (DLLs) because these versions do no support GZip by default.

 In Java, you can use GZIPInputStream to unzip the response.

Examples can be found at ais.galileo.com.

.NET ZIP examples can be found at:

http://testws.galileo.com/GWSSample/Help/GWSHelp/gzip_c_sharp_.net.htm

Recommendation

Use GZip as often as is practical to alleviate network bandwidth and significantly speed up the response
time for large transactions with GWS.

Note: Using GZip can add a slight delay on small transactions, or on processor or hard-disk bound
machines.

Galileo Web Services Implementation Best Practices and Development Guidelines 4
Travelport

Other Parameters

Maximum Connections

.Net

The default two-connection limit for connecting to a Web resource can be controlled via a configuration
element called connectionManagement. The connectionManagement setting allows you to add the
names of sites where you want a connection limit that is different than the default.

.Net 1.1

Add the following code snippet to a typical Web.config file to increase the default value for all servers you
are connecting, to a connection limit of 500.

<configuration>
 <system.net>
 <connectionManagement>
 <add address="*" maxconnection="500" />
 </connectionManagement>
 </system.net>
 <system.web>

.Net 2.0

The following code gets or sets the maximum number of connections that can be made to a remote
computer.

Namespace: System.Net.Configuration

Assembly: System (in system.dll)

public int MaxConnection { get; set; }

Recommendation

The connectionManagement element should be set to correspond to your system’s projected peak load.

Note: Failure to set connectionManagement correctly can severely impact performance.

SYN Connection Limit

Protect Against SYN Flood Attacks (Windows XP/2003)
Windows includes protection that limits the maximum unacknowledged SYN packets to 10. The limit
prevents the propagation of viruses that use this technique from flooding the internet. However, this limit
also prevents legitimate performance systems from rapidly opening new sockets at the same rate. Its
affect on most production systems is small, but is often seen as very slow responses during performance
testing.

The limit is hard-coded directly into the tcpip.sys file in Windows XP SP2 and Windows 2003 Server SP1.
Earlier systems, such as Windows 2000 Windows XP SP1, do not have a hard-coded limit.

Recommendation

If it is likely that your system will require more that 10 sockets to be initialized simultaneously, consider
using an alternative OS. Also consider using KeepAlives to alleviate this issue. See KeepAlive for details.

Galileo Web Services Implementation Best Practices and Development Guidelines 5
Travelport

Special GWS Transaction Considerations

FareQuoteSuperBB <optimize>
FareQuoteSuperBB_# is a transaction that returns availability and price at the same time. It is used as the
core transaction for many Internet Booking Engines in the B2C world. When you optimize the use of this
transaction, response time is dramatically improved. Optimization can be achieved by indicating the
specific KLRs you want to receive in the response.

See the API Developer Notes: Using Optimize for FareQuoteSuperBB document for instructions on
how to specify which KLRs you want from the host.

Filters
It is recommended that you use filters to limit the amount of data that is returned by the GWS complex to
the client application. Filters that are applied in the GWS tier also minimize the amount of data sent in the
response and reduce the response time.

Shopping Options
If the responses to your shopping requests do not return the expected results or options, please contact
your Galileo representative to discuss your concerns. There are various options that can change the
results, depending on your business requirements.

Galileo Web Services Implementation Best Practices and Development Guidelines 6
Travelport

Development Guidelines

Overview
This section outlines recommendations and best practices for developing a software application that uses
Galileo Web Services (GWS). This section should be used in conjunction with the Implementation Best
Practices section.

This guide assumes familiarity with Galileo Web Services, SOAP, XML, Java and/or .Net programming
languages.

Reference Data
 Ensure results are cached when using the Travel Codes Translator eBL Web Service

(encode/decode).

 Do not refresh more than once per day.

 Download the full Galileo Reference Data database as an alternative to caching.

Session Management
 Use sessionless requests whenever possible.

 Batch submit sessioned entries (if required) in a series followed by a call to end the session.
Batching promotes the most efficient use of GTID sessions.

Transactions
 Use the latest versions of each transaction available at the start of development.

 Limit spawning transactions (e.g., submitting multiple transactions at the same time.

 Use caching where appropriate, and create cached data incrementally instead of all at one time.

 Validate travel codes and other local verifiable data from Galileo’s Reference Data against a
database on the customer’s side.

 Do not use Sell transactions to determine availability before confirming a sell.

 XML Select and XML API Desktop customers that use cruise transactions must ensure that the
first three alphanumeric characters (a–z, 0–9) of the user field in the identity record are randomly
generated by their customer application. Unique user fields help to avoid requests being
mismatched to responses in cruise vendor systems.

Galileo Web Services Implementation Best Practices and Development Guidelines 7
Travelport

Web Services
 Use the MultiSubmitXml method whenever possible, but avoid bundling too many transactions

into the MultiSubmit call because the response times are affected by the slowest responding
transaction. The recommended limit to the number of requests is 15 - 20 included in a single call,
and there are diminishing returns if the number is extremely high.

 Use Pre-Authentication for HTTP Basic Authentication Credentials to prevent a scenario where
requests are being sent without credentials followed by a second request being sent with
credentials. See the Galileo Web Services Help: Getting Started > Accessing Galileo Web
Services.

 Use of GZIP functionality is recommended, and can increase performance. See the Galileo Web
Services Help: Getting Started > Accessing Galileo Web Services > gzip Compression.

 Do not use the Connection: KeepAlive header.

 Disable Nagling or the Nagle Algorithm.

Shopping
 Do not follow Shopping requests with a FareQuoteFlightSpecific_# transaction.

 Use Shopping requests carefully because they are resource intensive. Indiscriminate use of these
requests can cause system instability and poor performance of your client. Work with the API
Technical Support Team on the most efficient use for your particular application.

Development/Troubleshooting
 Use your logging and monitoring functionality to facilitate quicker and more efficient

troubleshooting responses from the API Technical Support Team.

 Ensure that the browser Back button does not resend all of the requests.

