

Galileo API Developer Notes

A Galileo Web Services .NET Connection Class Using C#

25 October 2011

Version 1.2

A Galileo Web Services .NET Connection Class Using C# ii
Travelport

THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO
TRAVELPORT

Copyright

Copyright © 2011 Travelport and/or its subsidiaries. All rights reserved.

Travelport provides this document for information purposes only and does not promise that the
information contained in this document is accurate, current or complete. This document is subject to
change without notice.. No part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or any means electronic or mechanical, including photocopying and recording for
any purpose other than the licensee’s personal use without the prior written permission of Travelport
and/or its subsidiaries.

Trademarks

Travelport and/or its subsidiaries may have registered or unregistered patents or pending patent
applications, trademarks copyright, or other intellectual property rights in respect of the subject matter of
this document. The furnishing of this document does not confer any right or licence to or in respect of
these patents, trademarks, copyright, or other intellectual property rights.

All other companies and product names are trademarks or registered trademarks of their respective
holders.

A Galileo Web Services .NET Connection Class Using C# iii
Travelport

Contents

Overview .. 1

Getting Started .. 2

Creating the Connection Class .. 3

Using App.config .. 6

SubmitXml .. 8

SubmitXMLOnSession ... 9

Using the Connection Class .. 10

Optimizing the GWS Connection ... 11

Optimization Approach .. 11

What Optimization Provides .. 11

Using Optimization .. 12

Adding the Optimization Product to your Web Reference ... 14

Appendix A: The ApolloConn Class ... 15

Appendix B: Prototype App.Config File ... 18

A Galileo Web Services .NET Connection Class Using C# 1
Travelport

Overview

One of the fastest ways to develop a client application for Galileo Web Services (GWS) is to take
advantage of the built-in features of Visual Studio for Microsoft .NET. Much of the work is handled behind
the scenes by the Web Reference feature of Visual Studio. This short tutorial demonstrates how to
develop an Apollo connection class that your application can use to call the GWS XML Select methods.

A Galileo Web Services .NET Connection Class Using C# 2
Travelport

Getting Started

This example develops a simple application that includes the connection class and a simple class that
uses the connection. The tutorial assumes that you are developing in C# using Visual Studio. You also
need the GWS credentials provided by your Galileo account manager.

1. Open a project in Visual Studio. The project can be a Windows Application or a Class Library, if you
want to re-use this connection class for many projects.

A Galileo Web Services .NET Connection Class Using C# 3
Travelport

Creating the Connection Class
The first step in creating a connection class is to establish a reference to the Galileo Web Services.

 In the Solution Explorer, right-click on Reference and select Web Reference. 1.

2. Enter the URL of the XML Select Web Service based on your region. To review the correct URL for

your region, see the table at
http://testws.galileo.com/GWSSample/Help/GWSHelp/connecting_to_gws.htm

 To use as an example, the copy system for US Markets is:

https://americas.copy-webservices.travelport.com/B2BGateway/service/XMLSelect?WSDL

A Galileo Web Services .NET Connection Class Using C# 4
Travelport

3. Click the Add Reference button.

The com.travelport.copy-webservices.americas reference is added to your project, and an XmlSelect
class is created, which encapsulates the SOAP protocols and the method calls to the Web service.

Web Reference Class

The XMLSelect class can be used directly by the rest of your application. However, a better approach is
to create a new class which inherits from the XMLSelect class. This new class encapsulates all of the
details of the connection to the Apollo system, including the credentials needed to access the system, as
well as the Web service methods.

A Galileo Web Services .NET Connection Class Using C# 5
Travelport

4. Add a class called ApolloConn to your project. This class inherits from
com.travelport.copy_webservices.americas.XmlSelect.

5. Add these imports:

using System;

using System.Configuration;

using System.Net;

using System.Xml;

6. Define the variables that will be used throughout the class:

// Define variables used by multiple methods

private string gwsHAP;

private XmlElement defaultFilter;

private string token = ""; // Session token

The class, with comments, now looks like:
using System;

using System.Configuration;

using System.Net;

using System.Xml;

namespace ApolloConn

{

 /// <summary>

A Galileo Web Services .NET Connection Class Using C# 6
Travelport

 /// This class provides the actual connection to the Apollo GDS system for

 /// executing specific XML transactions. The goal of the class is to encapsulate the

 /// actual connection method and the specific credentials needed for access.

 /// Inherits from the Web Service proxy, so that all of the GWS transaction methods

 /// are available to this instance.

 /// This class also helps manage the session, creating a new session when needed.

 /// </summary>

 public class ApolloConn : com.travelport.copy_webservices.americas.XmlSelect

 {

 // Define variables used by multiple methods

 private string gwsHAP;

 private XmlElement defaultFilter;

 private string token = ""; // Session token

 //--

 public ApolloConn()

 {

 //

 // TODO: Add constructor logic here

 //

 }

 }

}

Using App.config
The next step is to add the access to the GWS credentials. Use the .NET Dynamic Properties feature,
which stores properties that are read at runtime from an external file in your project, App.config,.
App.config is not a secure location for data such as passwords, so access to this file should be limited.

The configuration file contains the user name, password, Host Access Profile (HAP), and a URL that
defines the end point of the GWS Web Service. Even though the URL is included in the WSDL file, it is a
good idea to have it in the configuration file, in case there is a change, such as a move from the copy
system to production.

A Galileo Web Services .NET Connection Class Using C# 7
Travelport

1. Right-click on the project in the Solution Explorer and select Add/Add New to add the App.config file
to your project.

2. Select XML File, and name this file App.config.

3. Add your credentials to the file (replacing your . . . with your values) so that it looks similar to:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <appSettings>

 <add key="GWSUSERNAME" value="yourUserName" />

 <add key="GWSPASSWORD" value="yourPassword" />

A Galileo Web Services .NET Connection Class Using C# 8
Travelport

 <add key="GWSURL" value=" https://americas.copy-
webservices.travelport.com/B2BGateway/service/XMLSelect " />

 <add key="GWSHAP" value="ApolloCopy_yourHAP" />

 </appSettings>

</configuration>

When your project is compiled, App.config is copied to the project output folder and renamed
ApolloConn.exe.config. This file is distributed with your application.

4. Retrieve the individual values by reading them from the configuration file, to continue with the
constructor:

// Create and set up the credentials for XMLSelect WebService.

string userName = ConfigurationSettings.AppSettings["GWSUSERNAME"];

string password = ConfigurationSettings.AppSettings["GWSPASSWORD"];

gwsHAP = ConfigurationSettings.AppSettings["GWSHAP"];

this.Url = ConfigurationSettings.AppSettings["GWSURL"];

5. Store the local credentials by creating a NetworkCredential using the retrieved user name and
password.

NetworkCredential netCredentials = new NetworkCredential(userName, password);

6. Add a credential cache to combine your credentials with the GWS end point and set a few
parameters. The credential cache is used each time a method is called on the Web Service. The
necessary settings for the credential cache are:

//Create the Credential Cache to assign to XMLSelectWebService client

CredentialCache cc = new CredentialCache();

//Xml Select uses Basic Authentication, but Windows XP defaults to Digest

cc.Add(new Uri(this.Url), "Basic", netCredentials);

Credentials = cc;

PreAuthenticate = true;

7. Create a default filter to be added to the various method calls. The filter is an XML element (not a
string) because this parameter type is used by the Web Service methods.

// Create a default filter document for use in the overloaded simplified requests

XmlDocument dFilter = new XmlDocument();

dFilter.LoadXml("<_/>");

defaultFilter = dFilter.DocumentElement;

The constructor is complete.

SubmitXml
Add the method to submit sessionless XML transactions. Sessionless transactions are used for air, car,
and hotel availability, as well as all cruise transactions.

This method accepts the XML-formatted request string and converts it into an XML Element, as required
by the service. It then adds the default filter and the Host Access Profile (HAP) and calls the service. The
response is converted back to a string and returned.

public string SubmitXml(string request)

{

A Galileo Web Services .NET Connection Class Using C# 9
Travelport

 // Simple overloaded version of SubmitXml transaction with a string request,

 // adding the HAP and using the default filter

 XmlDocument xmlRequest = new XmlDocument();

 xmlRequest.LoadXml(request);

 return this.SubmitXml(this.gwsHAP,

xmlRequest.DocumentElement,

defaultFilter).OuterXml;

}

A similar method that returns an XmlElement can be added simply by replacing the string return type
with XmlElement and removing the OuterXml in the return line.

SubmitXMLOnSession
Sessioned transactions require little more work. To simplify things, this method creates a session if one
does not already exist. The session identifier is held in the token variable. The rest of the method looks a
lot like SubmitXml.

public string SubmitXmlOnSession(string request)

{

 // Simple overload for session requests. String input, adds HAP and filter

 // and begins a session if one does not exist.

 XmlDocument xmlRequest = new XmlDocument();

 xmlRequest.LoadXml(request);

 // Create a session if one does not already exist

 if (this.token == "") this.token = this.BeginSession(this.gwsHAP);

 return this.SubmitXmlOnSession(this.token,

 xmlRequest.DocumentElement,

 defaultFilter).OuterXml;

}

Again, a similar method that returns an XmlElement can be added simply by replacing the string return
type with XmlElement and removing the OuterXml in the return line.

You must end the session explicitly by calling the EndSession method of this class. Keep in mind that
GWS sessions expire quickly if there is no activity.

A Galileo Web Services .NET Connection Class Using C# 10
Travelport

Using the Connection Class
To use the connection class:

8. Create a request string.

9. Create an instance of the connection class.

10. Submit a transaction.

For example, if your main application has a button called button1 and a text box called textBox1,
execute the simple XML Select transaction to get a local time:

 private void button1_Click(object sender, System.EventArgs e)

{

 string request = "<LocalDateTimeCT_6_0><LocalDateTimeMods>”

+= “<ReqCity>DEN</ReqCity>”

+= “</LocalDateTimeMods></LocalDateTimeCT_6_0>";

 ApolloConn host = new ApolloConn();

 textBox1.Text = host.SubmitXml(request);

}

Now you can use Galileo Web Services.

A Galileo Web Services .NET Connection Class Using C# 11
Travelport

Optimizing the GWS Connection

Although .NET handles all of the details needed to create the SOAP envelope, marshal the data, and
handle the data transport, not all the Microsoft defaults work with the Galileo Web Services.

GWS supports the GZip compression standard for both requests and responses. GZip is not included in
the .NET Web service tools. This section describes overcoming the defaults and adding GZip capability to
your connection class.

Optimization Approach
The automatically generated code that the .NET framework created when you added the Web Reference
inherits from a class called:

System.Web.Services.Protocols.SoapHttpClientProtocol

This class, with the classes it inherits from, provides the Web Service framework that the connection class
you created is based upon. Many of the settings and defaults in these underlying classes are hidden and
hard to access.

Therefore, create a new class that inherits from System.Web.Services.Protocols.SoapHttpClientProtocol,
adds access to several properties, and overrides methods to ensure that the properties are used correctly.
Support for the GZip compression is obtained by adding the class library ICSharpCode.SharpZipLib.dll,
which is used by the new class.

What Optimization Provides
The new optimization class provides the access to the following properties:

 Expect100Continue: Using Expect 100-Continue can add anywhere from 25 to 150 milliseconds
to a typical transaction, and network delays can make the time much longer. Any client that uses
GWS services should disable Expect 100-Continue. The framework hides access to this setting.
The new class provides access to this setting as a property named Expect100Continue.

 KeepAlive: Using the Connection:KeepAlive header on HTTP 1.1 causes the framework to pool
HTTP connections. Connection pooling can provide some performance improvement by
eliminating the time to establish a connection when connections are available in the pool.

However, connections in the pool can be closed by a server for a variety of reasons. When
connections are closed, a Web Service call returns an exception with a connection error.

Using a new socket for every connection can add a little connection time (usually only milliseconds if
you have a fast network connection), but it is more reliable because you are less likely to encounter
connection exceptions. For reliability, always set the KeepAlive property in the new class to false
(which is now the default value).

 The Nagle Algorithm: The Nagle Algorithm was created to make TCP traffic more efficient by
combining several small messages into one packet. For Web Services, this algorithm does not
help, and can cause delays of up to 200 milliseconds. Galileo recommends turning off the Nagle
Algorithm. In the new class, this is a property setting called UseNagleAlgorithm. The default value
is false.

 GZip compression: GZip compression can be added to your client by using the GZipRequest
and AcceptGZip properties provided by the optimization class.

A Galileo Web Services .NET Connection Class Using C# 12
Travelport

 GZipRequest enables the outgoing request to be compressed.

 AcceptGZip provides the ability to receive and decode a compressed response.

The two options are independent of each other. A setting of true enables compression.
Compression can significantly reduce the transmitted size of large responses, such as the
response from a Super Best Buy (FareQuoteSuperBB_#) request. The default values are true.

Using Optimization
The code for the optimization class is available from the GWS Sample Site as a project. Download the
project and unzip it into a folder. The easiest way to use the optimization is to add it to your solution as a
project:

Browse to the location where you saved the optimization project and select the .cproj file and click Open:

Right
Click

A Galileo Web Services .NET Connection Class Using C# 13
Travelport

The optimization project is now included in your solution as designated by the “2” in the Solution line of
your project.

You must also add the Optimization Product to your Web Reference.

Right-click

Select Projects

Click OK

Select this
project

A Galileo Web Services .NET Connection Class Using C# 14
Travelport

Adding the Optimization Product to your Web Reference
The optimization project is now included in your solution, but you still need to connect it to your existing
Web Reference:

1. Modify the XmlSelect code (created in the connection class) that was automatically generated when
you added the Web Reference. Find this code under the Web References
/com.travelport.copy_webservices.americas and locate the line that defines the class, similar to:

public class XmlSelect : System.Web.Services.Protocols.SoapHttpClientProtocol {

2. Comment this line out and add a new line similar to:

public class XmlSelect : Galileo.Web.Services.EnhancedSoapHttpClientProtocol {

The new line causes your Web Reference class to inherit from the new optimized class, which adds
the properties and methods to your connection. Keep in mind that if you regenerate the Web
Reference class for any reason, you need to repeat this modification.

By way of inheritance, your connection class now includes the properties described above, as well as
two methods in the optimized class that override the standard GetWebRequest and
GetWebResponse classes. If you want to change the default values of the new properties, you can
modify them in the EnhancedSoapHttpClientProtocol constructor. You can also change their values
directly in the ApolloConn class.

A Galileo Web Services .NET Connection Class Using C# 15
Travelport

Appendix A: The ApolloConn Class
using System;

using System.Configuration;

using System.Net;

using System.Xml;

namespace ApolloConn

{

 /// <summary>

 /// This class provides the actual connection to the Apollo GDS system for

 /// executing specific XML transactions. The goal of the class is to encapsulate the

 /// actual connection method and the specific credentials needed for access.

 /// Inherits from the Web Service proxy, so that all of the GWS transaction methods

 /// are available to this instance.

 /// This class also helps manage the session, creating a new session when needed.

 /// </summary>

 public class ApolloConn : com.travelport.copy_webservices.americas.XmlSelect

 {

 // Define variables used by multiple methods

 private string gwsHAP;

 private string token = ""; // Session token

 private XmlElement defaultFilter;

 //--

 public ApolloConn()

 {

 // Default constructor. Create and set up the credentials for

// XMLSelect WebService.

 string userName = ConfigurationSettings.AppSettings["GWSUSERNAME"];

 string password = ConfigurationSettings.AppSettings["GWSPASSWORD"];

 this.Url = ConfigurationSettings.AppSettings["GWSURL"];

 gwsHAP = ConfigurationSettings.AppSettings["GWSHAP"];

 NetworkCredential netCredentials = new NetworkCredential(userName, password);

 //Create the Credential Cache to assign to XMLSelectWebService client

 CredentialCache cc = new CredentialCache();

A Galileo Web Services .NET Connection Class Using C# 16
Travelport

 //Xml Select uses Basic Authentication, but Windows XP defaults to Digest

 cc.Add(new Uri(this.Url), "Basic", netCredentials);

 Credentials = cc;

 PreAuthenticate = true;

 // Create a default filter document for use in the overloaded simplified requests

 XmlDocument dFilter = new XmlDocument();

 dFilter.LoadXml("<_/>");

 defaultFilter = dFilter.DocumentElement;

 }

 //--

 public string SubmitXml(string request)

 {

 // Simple overloaded version of SubmitXml transaction with a string request,

 // adding the HAP and using the default filter

 XmlDocument xmlRequest = new XmlDocument();

 xmlRequest.LoadXml(request);

 return this.SubmitXml(this.gwsHAP,

xmlRequest.DocumentElement,

defaultFilter).OuterXml;

 }

 //--

 public XmlElement SubmitXml(XmlElement xmlRequest)

 {

 // Simple overloaded version of SubmitXml transaction

 // Uses an XmlElement input and adds the HAP and default filter

 return this.SubmitXml(this.gwsHAP, xmlRequest, defaultFilter);

 }

 //--

 public string SubmitXmlOnSession(string request)

 {

 // Simple overload for session requests. String input, adds HAP and filter

 // and begins a session if one does not exist.

 XmlDocument xmlRequest = new XmlDocument();

 xmlRequest.LoadXml(request);

 // Create a session if one does not already exist

A Galileo Web Services .NET Connection Class Using C# 17
Travelport

 if (this.token == "") this.token = this.BeginSession(this.gwsHAP);

 return this.SubmitXmlOnSession(this.token,

xmlRequest.DocumentElement,

defaultFilter).OuterXml;

 }

 //--

 public void EndSession()

 // Simple overload that erases the session token

 {

 this.EndSession(this.token);

 this.token = "";

 }

 }

}

For completeness, methods should be added for:

 GetIdentityInfo

 MultiSubmitXml

 SubmitTerminalTransaction

 SubmitCruiseTransaction

A Galileo Web Services .NET Connection Class Using C# 18
Travelport

Appendix B: Prototype App.Config File
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <appSettings>

 <add key="GWSUSERNAME" value="yourUserName" />

 <add key="GWSPASSWORD" value="yourPassword" />

 <add key="GWSURL" value=" https://americas.copy-webservices.travelport.com/B2BGateway/service/XMLSelect
" />

 <add key="GWSHAP" value="yourHAP" />

 </appSettings>

</configuration>

Other parameters, such as the Pseudo City Code (PCC), can be added using the same format.

